Ricci solitons on low-dimensional generalized symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Low Dimensional Ricci Limit Spaces

We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff dimension is not greater than two. We also classify one-dimensional Ricci limit spaces.

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

On rotationally symmetric Kähler-Ricci solitons

In this note, using Calabi’s method, we construct rotationally symmetric KählerRicci solitons on the total space of direct sum of fixed hermitian line bundle and its projective compactification, where the curvature of hermitian line bundle is Kähler-Einstein. These examples generalize the construction of Koiso, Cao and Feldman-Ilmanen-Knopf. 1 A little motivation In [1], the authors constructed...

متن کامل

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

Prescribing Ricci Curvature on Complexified Symmetric Spaces

The complexification of the compact group G is the group G whose Lie algebra is the complexification of the Lie algebra g of G and which satisfies π1(G ) = π1(G). The complexification G/K of G/K can be then identified (G-equivariantly) with the tangent bundle of G/K. We also remark that the Kähler form obtained in the Theorem is exact. This result has been proved in [9] for symmetric spaces of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2017

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2016.11.008